
Online Evaluation of Manipulation Tasks for
Mobile Robots in Industry 4.0 Scenarios

Sebastian Zug, Stefan Wilske, Christoph Steup, Arnd Lüder
Otto-von-Guericke Universität Magdeburg

Magdeburg, Germany
Email: {zug, wilske, steup, lueder}@ovgu.de,

Abstract—The concepts of “Industry 4.0” are founded on
Cyber-Physical Systems (CPS) that interact flexibly with each
other. The system is no longer an individual robot equipped with a
predefined set of sensors, drives and manipulators. Furthermore,
it represents a task-specific selection of all available CPS in a
certain area. This adaptive composition provides flexible handling
of varying environmental conditions and stabilizes the perception
quality related to the current task requests. But the permanent
adaptation includes a number of challenging tasks - the selection
and adjustment of the involved CPS has to be done on run-time
now.

In this paper we propose a new approach for analyzing CPS
configurations for manipulation tasks. If a mobile robot has to
handle an object, the algorithm explores all available actuators
and sensors. The proposed concept applies a graph-based model
to define the individual failures of each component and the
geometrical links in between. Based on this representation, all
suitable combinations are determined, the expected failure level
is calculated and compared in relation to the requested handling
precision.

I. INTRODUCTION

The idea of “Industry 4.0” combines a number of significant
changes in industrial production in order to provide versatile
automated plants especially optimized for small charges [1].
The consequential need for permanent adaptation cannot be
applied with traditional approaches and systems that have to
be programmed, configured and adjusted by human workers
and engineers. Instead, we require a kind of self-organization,
applying a flexible interaction between intelligent devices
(sensors, actuators, controllers). If we transfer this idea on the
autonomous transportation and manipulation platform depicted
in Fig. 1, it should offer its main services (move from A
to B, grasp an object) and its environmental perceptions on
raw-data level (camera images, laser scans) as well as on
feature level (humans, objects) for all other entities. In the
other direction, the robot receives data from other sensing
devices and considers them for its operations. Accordingly,
the planning and control algorithm of the platform and the
manipulator will be confronted with a large bandwidth of
situations related to

• environmental conditions related to light, temperature,
etc.

• available sensors and corresponding data sets, due to the
presences of other robots or an intelligent infrastructure

External and
internal sensors

Mobile manipulator
equiped with two

handling tools

Magnetic end-
effector and gripper

Manipulation zone
with different objects

Figure 1. Exemplary scenario used for the evaluation. A mobile manipulator
has to move objects from the black area, that is monitored by different internal
and external sensors. The localization uncertainty of each entity is visualized
by the red ellipses.

• requested precision and accuracy of the manipulation
related to position and force and

• the properties of objects that have to be handled.
In various domains, these parameters are summarized by the
term “context” of a task [2], [3]. In a conventional application
the context is known to the developer at design time. Based
on this knowledge he starts an iterative process combining the

1) aggregation of the context parameters,
2) comparison between requested and provided capabilities
3) decision about the applicability of a certain pickup and

setting
In case of a negative result the engineer probably integrates
additional sensors, refines the control or reconfigures the
manipulator. Hence, he partially manipulates the context and
optimizes the task execution with regard to costs, duration [4],
power consumption or safety risks [5].

The intended flexibility of Industry 4.0-scenarios does not
allow such off-line analysis and requires an evaluation and
optimization process at run-time. The main challenge, a task-
oriented analysis of the context is depicted in Fig. 1. The paper
presents a new approach that compares the required precision
and accuracy of the manipulation task with the capabilities
of available sensor/actuator combinations. The corresponding

978-1-4673-7929-8/15/$31.00 c©2015 IEEE

pose deviation (position and orientation) between the manip-
ulation objects and the end effector is determined by robot
and/or sensor displacements as well as measurement errors.
The errors are represented by Mahalanobis ellipses in Fig. 1.
In order to evaluate these parameters, we model them by
an undirected graph and integrate specific error assumptions.
Based on this general representation, the effects of a platform
and sensor displacement in conjunction with disturbed mea-
surements and manipulator uncertainties can be mapped on the
pose of the end effector. The function pf (c,p) describes the
probability of a pose p based on the current context c. On the
other hand, the error tolerance of the end effector is defined
by a success function ps(c,p). Our approach matches both
functions and calculates the probability of a successful task
completion. The contribution of the paper is defined by the
description of the generic graph model representing errors in
sensor/actuator systems and its evaluation in relation to tasks
requests. The on-line analysis guarantees high flexibility and
an optimal use of all available resources.

This paper has the following structure. The next section
describes the basic concepts, assumptions and algorithms of
the approach followed by a first evaluation related to the
exemplary scenario. Sec. IV reflects the current state of the
art in the field of context aware manipulation tasks. The last
section summarizes and defines future work.

II. CONCEPT

In order to compute the feasibility of a given manipulation
task, we have to define abstract representations of the robot,
its components, external and internal sensors as well as the
environment. It should be noted, that we have not considered
dynamic aspects so far and that we are evaluating an isolated
snapshot of the system. Possible improvements of the position-
ing precision and accuracy of the manipulator due to integrated
control applications are not considered at this stage of the
project. Hence, the analysis represents a worst case study and
can provide fundamental assessments of the configuration.

A. System description

For the intended evaluation we need to design a mathemat-
ical description of
• the geometric relations between the components,
• the included possible deviations in position and orienta-

tion and
• the fault-tolerance of the manipulation tool.

In the first part of the section we discuss these points and
explain the interaction in a second part.

1) Location related information: We assume each sensor
and actuator as a smart entity providing machine readable in-
formation about its configuration and parameterization beside
the interfaces for sensor data and actuation commands. One
aspect in these descriptions are a pose information p (6DOF)
related to parent coordinate systems. Beside, each CPS pub-
lishes its id, time stamp and the local frame name periodically
embedded in a heart beat signal. The self-describing approach

guarantees high flexibility and avoids a reconfiguration in case
of appearing or disappearing components [6].

These information are gathered by a collector component
in order to generate a model of the system context. Fig. 2
illustrates its output. Obviously, we have an actuator chain
containing 2 joints, 2 manipulators (magnet, gripper). Addi-
tionally the robot is equipped with one sensor (sensor 0) Due to
the possibility of the existence of multiple information sources
for one object an equivalence table is needed which holds
the information of this association. For example, one object
(object) is tracked by different sensors (sensor 0, sensor 1 and
sensor 2) that may have different positions, orientations, error
models and observation areas. These should not be represented
by a single node in order to avoid a loss of details. Hence, we
add separate entries for each sensor and its associations based
on the evaluation of its pose and measurement area.

In a second phase the pose table is transformed to a directed
graph. The relations between the different frames and poses
are condensed in a transformation tree (see figure 2).

Figure 2. Representation of the relations between different CPS as a directed
graph (transformation tree)

2) Error-related information: The second aspect, that is
mapped on the graph representation concerns the character-
ization of the individual positioning errors and their effects on
the end effector. Hence, we have to consider two aspects in
order to predict the position quality of the manipulation tool
- the individual error characteristic and their transformation
through the graph.

We consider erroneous position assumptions for the dis-
tributed components (CPSs and manipulation objects) caused
by:
• sensor measurements and
• uncertain precision and accuracy of the actuators
• missing or inaccurate calibration of manual mounted

sensors
Errors can be defined in multiple ways. In this paper errors

refer to multivariate displacements between assumed and real
poses. It is assumed, that each node can inject errors related
to an error distribution pf : <6 → <,p 7→ p. The individual
error models can be separately specified in two ways:

a) Parametric distributions: In many processes errors are
described by Gaussian distributions. The decisive advantage is
caused by the low computational effort for a combination of

two distributions and linear transformation operations. Another
aspect relates to the number of parameters that have to be
stored. A six degree of freedom pose is defined by a 6
dimensional vector of the mean µ and a 6x6 covariance matrix
Σ. The probability of a specific pose error can be calculated
by a multi-variant normal distribution:

f(p) =
1

(2π)3 |Σ|
1
2

exp

(
−1

2
(p− µ)T Σ−1(p− µ)

)
Related to parametric error models we consider only Gausian
distributions in a our first implementation. The covariance
matrix Σ has to be registered in the graph structure beside
the estimated pose µ.

b) Non-parametric distributions: Parametric distribu-
tions lead to a fast computation but may not be the first
choice for representing pose errors with multiple maxima,
unbalance or uncommon shapes. For example, this applies
to a fence and its effect on the error of a pose. Here we
have to cut the parametric distribution at a certain axis and
to describe the resulting distribution in a non-parametric way.
Standard metrics like mean, std or quartile are not suitable.
Consequently, we decided to include a sample point based
representation in our framework. The frequency of a pose
is determined by the frequency of the corresponding sample
point. This can lead to a high computational effort but gives
the user the freedom to define:
• complex distribution shapes
• with a specific (local, global) resolution.

A low resolution may lead to low quality of the result, this
is a trade off of computation time and quality. The sample
points could be directly gained from the reference measuring
for sensor and actor calibration.

Similar to the pose and frame data, all CPSs must be aware
of the specific pose errors. Electronic data sheet concepts for
this purpose are described in [6].

(a) Original Kuka-Youbot end-effector
(pair of gripper jaws)

(b) Magnetic end-effector

Figure 3. Parts inside the red area will be manipulated correctly. The
transparency level of the red block illustrates different probabilities.

3) End-effector related information: The evaluation opera-
tion compares the possible displacement of the effector and its
error tolerance. For this purpose we need to define a success
function. It is task-specific and maps the pose error on a

probability of a correct tasks execution. Furthermore, if an
error pose were result in a damage or hazard the success
function will provide a small probability.

Fig. 3 illustrates two examples of the success function. The
red zones in Fig. 3a and Fig. 3b show the area of a successful
manipulation operation based on a series of grasping opera-
tions with objects at different positions. The various levels of
transparency represent the probabilistic aspect. Manipulation
tasks are potentially highly successful, if the object is located
in the solid red zone. In the periphery the success probability
decreases very fast, so that there is nearly no transparency
level visible. The individual structure depends on the physical
principles of the end effector.

The success function illustrated for the gripper in Fig. 3a
can be described mathematically

ps(p) =

1.0 if − 0.010m < x < 0.010m
& − 0.005m < y < 0.005m
& − 0.005m < z < 0.005m

1.0− (x−0.010m)
0.005m if 0.010m < x < 0.015m

& − 0.005m < y < 0.005m
& − 0.005m < z < 0.005m

0.0 else
(1)

The non-parametric success function is described by a set of
sample points containing position and orientation information.

At this stage we are able to combine all three aspects
and to generate the undirected graph enhanced by error and
transformation data. Fig. 4 illustrates the result based on an
extracted graph representing the scenario of Fig. 1. For each
node a specific error model is assigned, each edge is described
by a transformation matrix in homogenous coordinates.

(a) normal distributed error

(b) Non parametric distributed error

Figure 4. Exemplary graph model with additional context data (error
assumptions for each node and transformation information for each edge)

The transformation of the errors from frame i to frame i+1
is applied by the jth transformation matrix Mj . This is shown

in equation 2 for the mean values µi or kth sample points pi,k

respectively. The tilde symbol indicates the transformation in
the actual frame.

p̃i+1,k = Mjpi,k (2)

The error propagation has to be calculated in the same way.
Equation 3 shows the transformation of the covariance matrix
Σi into the next frame Σ̃i+1 with Rj as 3x3 rotation matrix
of the jth edge.

Σ̃i+1 =

[
Rj 0
0 Rj

]
Σi

[
Rj 0
0 Rj

]T
(3)

The transformed errors have to be combined with the errors
occuring in the next frame. The error propagation is defined
by equation 4 for parametric error models and in 5 for non-
parametric models.

Σi+1,total = Σ̃i,j + Σi+1 (4)
pi+1,m = p̃i+1,k + pi+1,l (5)

As visible in the last equation, by merging the previous
samples of pi+1 with p̃i+1, the number of sample points
increases. The evaluation algorithm normalizes the distribution
and calculate a new sample set with a constant size. The
corresponding configurations are globally defined.

For executing of the task, two elements must have the same
pose. The gripper must be located at the grip-point or the
magnet must meet the armature core assembled on the object.
The system needs the IDs of the two elements to compute the
relative error.

B. Processing chain

The algorithm computes the probability in five main steps
(see figure 5 A-E).

1) Receive system information: First, the actual system is
captured by the Collector. It listens to the fault and geometric
related information broadcast by the elements (sensors and
actors) (A). If no information is available, it leads to an error
state (F).

The Collector registers the elements, holds an actual set of
data and watches for missing heart-beat signals in order to
adapt the situation context. The monitoring process completes
the actual data-sets and provides the access for one or more
Evaluation components.

2) Create graph: The Evaluation starts computing after a
request of the Task manager.

Therefore the task-related information (success function) is
submitted by the request message. The Evaluation checks the
message for consistency to avoid computational effort, e.g. if
both elements of the task are the same.

Afterwards the actual set of available CPSs is requested by
the Collector.

In the second phase, the geometric relations of the physical
system are used to generate edges and nodes, which leads to
the structuring of the system as an undirected graph (B) (see
figure 6). The error information are stored in the corresponding
nodes. With this approach the recombination and reuse of

Figure 5. Sequence diagram for computing the execution probability of a
task

system elements can be easily handled and complies to the
idea of CPS.

It should be noted again that all information is presented
by nodes and edges. For example the knowledge of the
existence of an anchor or grip point on a part must lead to
an element broadcasting the error and geometric details so
that this information can be represented in the graph.

The information of the equivalence table are depicted as
dashed lines. The task related information are illustrated by a
dotted line.

Figure 6. System and additional information represented as a graph

3) Compute paths: In a third step the graph is analyzed for
the existence of a connection between the task relevant nodes
(C, nodes representing the tool and the object). The algorithm
regards the information of the equivalence table and creates
different paths. This results in up to n valid paths or an error
state (F), when the robot does not have enough information
to perform the task. Each path represents a set of information
sources with geometric relations and errors.

4) Compute error in path: By propagating and superimpos-
ing the error from the first node trough the path the overall
fault relatively to the relevant node is gained in a fourth
step (D). In this context, the result is influenced by every
transformation and the shape of the fault. If all elements are
free of error, the relative error will vanish.

5) Compute probability: In the last step, the error details of
each set of sources in combination with the success function
are used to calculate the n probability of a successful execution
(E). If multiple (m) success functions (or actors) are located
on the same pose, the probability can be calculated with the
same error information and we obtain k = m ·n probabilities.
In combination with external information like cost functions,
this can be used to make assumptions about global optimality
and the use of resources.

When calculating the probability every occurrence proba-
bility of a pose error is multiplied with the probability of
the success function at this pose. This results in a common
probability of the pose. By integrating over all poses the
overall execution probability is computed.

P =

∞∫
−∞

ps(p) · pf (p) dp (6)

III. IMPLEMENTATION AND EVALUATION

The system was implemented in C++ based on the robotic
operating system (ROS). This framework represents the quasi-
standard for mobile robotic application and provides a ser-
vice or publish/subscribe communication middleware, a huge
amount of robotic-specific applications for navigation and ma-
nipulation as well as a large number of hardware drivers. Due
to the communication infrastructure, hardware components can
be replaced transparently by simulated ones. In our case we
used VRep for this purpose and implemented the scenario of
Fig. 1 as visible in Fig. 8. VRep provides
• a large number of sensor models required for constructing

the (virtual) intelligent environment,
• a physics engine in the background important for an

examination of the grasping process and
• a powerful interface to control all components from ROS.
The graph implementation described in the previous chapter,

integrates the ROS frame transformation (tf) system. Each
ROS message type includes a frame identifier. Each frame
represents a local coordinate system. In order to connect
different frames their geometrical relations have to be de-
scribed by special tf-messages. While creating the graph, the
transformation of the links are read from the tf-tree and stored

as part of the edge-information in a matrix. For this purpose,
the eigen-lib is used and allows a simple and fast computation
of sample-point, frame and covariance transformation and
manipulation by matrix multiplication.

A. Evaluation example

The evaluation addresses the scenario depicted in Fig. 1.
It contains four components: the mobile robot KUKA youbot
with 5 DOF, a manipulator arm with a stereo camera and 2
RGB-D cameras in the surrounding environment. The robot is
supposed to lift up objects from the ground. In the evaluation
scenario we just consider the gripper jaw as end-effector. The
robot and the sensors are positioned relative to a world frame.
The pose details of the sensors as well as the detection results
are disturbed by errors corresponding to the error assumptions.
Our method is used to predict the probability of a success for
the manipulation.

B. Realization

Fig. 7 illustrates the implementation of the scenario from a
component perspective. The sensors and actuators on the left
are application-specific and may appear or disappear at run-
time. Each sensor/actuator provides its specific ID, frame ID,
a heart beat signal and tf information (static or variable).

The components on the right represent the core elements
of our approach: the Collector, the Evaluation and the user
interface. A reconfiguration of the system is recognized by the
Collector based on new component IDs (appearing) or missing
heart beat signals (disappearing) or information updates (re-
arrangement). A Task manager query causes the Evaluation
to use the actual system information from the Collector and
to compute the execution probability. The interaction with
the Collector and the Evaluation is controlled by sending
special ROS messages. For that, some ROS-tools serve as user
interface or GUI respectively. ROS implements many tools
for introspecting and interaction with the system, e.g. topic-
monitor, message-publisher and node-graph.

C. Simulation

For a first proof-of-concept testing we just consider the
robot and one external RBB-D sensor. The framework provides
a fault injection tool for each component, defining the error
assumption of a component and generating the corresponding
disturbances for poses. We consider three different error con-
figurations with varying orientations and amplitudes as visible
in Fig. 8 and Tab. I. The errors are Gaussian distributed. We
used a non-parametric representation with 1 million samples.

After the evaluation script launched all components, the
analysis Evaluation calculates the probability of a successful
run (8 sec.). In a second phase the simulation was executed
(17 sec.) on a quad-core Intel core i7 4th gen. with 4GHz
and 32GB RAM. This process was repeated 100 times for
each error model. The simulation and the algorithm results
are shown in Tab. I.

Predicted and simulated results reflect similar trends. As
expected, the success probability decreases with the increase of

Figure 7. Components of the scenario depicted in Fig. 1. On the left side
the sensors and actuators, on the right side the three core elements of the
evaluation process.

Kinect

X

Y
Z

Figure 8. Simulation environment of the scenario. The arrows illustrate the
orientation of the injected faults

the disturbance and with the number of disturbed coordinates.
The relative deviation of simulation and prediction increases
with higher disturbance as well. These deviations can be
explained with multiple effects concerning the algorithm and
the computation properties due to:
• random number generation for simulated disturbance
• number of samples for simulation
• discretization of normal distribution.

IV. STATE-OF-THE-ART

The idea of a context oriented self adaptation is a core
feature of Industry 4.0 Cyber-Physical Systems (CPS) [7] and
Internet of Things (IoT). Consequently, there is a large num-
ber of publications related to context specification situation
assessment [3] or adaptive planning [8],

Nevertheless, the core features of the intended dynamic
evaluation of manipulation tasks – an abstract representation
of the position errors, methods for evaluating their propaga-

Table I
COMPARISON BETWEEN PREDICTED AND SIMULATED PERCENTAGE OF

SUCCESSFUL COMPLETED TASKS

Configuration Probability for success
evaluation standard prediction simulation
case deviation result

(1)
Disturbance on x

0.1m 0.6 % 10.0 %
0.01m 40.7 % 55.0 %

0.001m 100.0 % 100.0 %

(2)
Disturbance on z

0.1m 4.3 % 10.0 %
0.01m 48.5 % 52.0 %

0.001m 100.0 % 100.0 %

(3)
Disturbance on x and z

0.1m 0.2 % 1.0 %
0.01m 18.9 % 29.0 %

0.001m 100.0 % 100.0 %

tion and effects on the system and a concept for describing
application demands – are not covered as a whole. Hence,
we have to explore the relevant work for the three mentioned
topics separately. It should be noted that the following list
includes only error processing approaches executed at run-
time. Methods for design time evaluations like Failure Modes
and Effects Analysis (FMEA) [9] are not considered at this
point.

A. Error description/characterization

Two different ways for error description are commonly used
in robotic applications. First of all, we can use an interval
analysis defining the maximum amplitude of an error or a
probabilistic concept. The last one can address parametric
or non-parametric distributions. Due to the benefits of the
Gaussian distribution this model is often used in robotic
applications. Correspondingly, this distribution is considered
in many electronic data sheet concepts (for instance in [10])
or middleware implementations like ROS.

A number of approaches aim at an encapsulation of the
error characteristic on a high abstraction level. For instance,
Elmenreich, Pitzek, and Schlager propose a validity value
between 0 and 1 for this purpose. In the same way, the
authors of [12] proposed a validity value based on an adapted
FMEA concept reaching from 1 to 1000. Due to the high
level of abstraction the validity values can be used to identify
an error level and to compare sensing values. However, the
approach is focused on scalar values and does not cover
position information yet.

B. Error propagation

The approaches mainly used for error propagation combine
the already mentioned interval analysis [13] and probabilistic
representations. Both approaches apply linear or non-linear
First-Order Error Propagation models of the system to map the
input error characteristic on an output error characteristic. For
non-parametric distributions Monte-Carlo Simulations calcu-
lates the propagation of individual samples. A comprehensive
overview is given in [14]. Another approach is given in [5].
The authors use an error representation based a on a vectorized
structure containing amplitude and occurrence probability.

The propagation through the system is modeled by matrix
operations.

C. Application related error evaluation

The concepts of fault tolerant control illustrate the lack
of the current state of the art. Particularly, the model-based
approaches are well suited to recognize erroneous states, but
the configuration of the detection strategy and the evaluation
rules (both represents the application needs) are defined at
design-time. A description of the most common approaches is
given in [15]

V. CONCLUSION AND FUTURE WORK

The paper motivated the online analysis of manipulation
tasks in CPS scenarios and presented concepts to manage
the resulting problems. A simulated scenario was used to
evaluate a first implementation. For this purpose, the results of
a number of simulation runs were compared to the predicted
success.

In the next steps the project will be enhanced by
• a new evaluation based on a simulation scenario includ-

ing:
– a variable set of multiple heterogeneous sensors,
– a robot error model,
– both actuator types,

• the integration of system dynamics and aspects of sensor
actuator control loops and

• an application of the framework on a real world scenario.
Another important feature needed for an applicability of the
approach is the automated generation of (sensor) error models
based on the robot.

ACKNOWLEDGMENT

This work has been partially supported by the DFG, through
project INST 272/221-1 “Mobile Cooperative Robotics” (Mo-
CoRo).

REFERENCES

[1] M. Brettel, N. Friederichsen, M. Keller, and M. Rosen-
berg, “How virtualization, decentralization and network
building change the manufacturing landscape: an indus-
try 4.0 perspective,” International Journal of Mechan-
ical, Industrial Science and Engineering, vol. 8, no. 1,
pp. 37–44, 2014.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M.
Smith, and P. Steggles, “Towards a better understanding
of context and context-awareness,” in Handheld and
ubiquitous computing, Springer, 1999, pp. 304–307.

[3] D. Zhang, X. H. Wang, and K. Hackbarth, “Osgi
based service infrastructure for context aware auto-
motive telematics,” in Proceedings of the IEEE 59th
vehicular technology conference, May, vol. 5, 2004,
pp. 2957–2961.

[4] S. Alatartsev and F. Ortmeier, “Improving the se-
quence of robotic tasks with freedom of execution,” in
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, September 14-
18, 2014, 2014, pp. 4503–4510.

[5] S. Zug, T. Brade, J. Kaiser, and S. Potluri, “An approach
supporting fault-propagation analysis for smart sensor
systems,” in Computer Safety, Reliability, and Security,
Springer Berlin Heidelberg, 2012, pp. 162–173.

[6] S. Zug, M. Schulze, A. Dietrich, and J. Kaiser, “Pro-
gramming abstractions and middleware for building
control systems as networks of smart sensors and ac-
tuators,” in Proceedings of Emerging Technologies in
Factory Automation (ETFA ’10), Bilbao, Spain, Sep.
2010.

[7] J. Shi, J. Wan, H. Yan, and H. Suo, “A Survey of Cyber-
Physical Systems,” in Wireless Communications and
Signal Processing (WCSP), 2011 International Confer-
ence on, IEEE, 2011, pp. 1–6.

[8] T. Heyer and A Graser, “Semi-autonomous initial mon-
itoring for context-aware task planning,” in Advanced
Intelligent Mechatronics (AIM), 2011 IEEE/ASME In-
ternational Conference on, IEEE, 2011, pp. 667–672.

[9] D. H. Stamatis, Failure Mode and Effect Analysis:
FMEA from Theory to Execution, 2nd ed. ASQ Quality
Press, Apr. 2003.

[10] E. Song and K. Lee, “Understanding IEEE 1451-
Networked smart transducer interface standard-What is
a smart transducer?” Instrumentation & Measurement
Magazine, IEEE, vol. 11, no. 2, pp. 11–17, 2008.

[11] W. Elmenreich, S. Pitzek, and M. Schlager, “Modeling
Distributed Embedded Applications on an Interface
File System,” in Proceedings of the Seventh IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’04), Vienna, Austria,
2004, pp. 175–182.

[12] S. Zug, A. Dietrich, and J. Kaiser, “Fault-handling
in networked sensor systems,” in Fault Diagnosis in
Robotic and Industrial Systems, G. Rigatos, Ed. St.
Franklin, Australia: Concept Press Ltd., 2012.

[13] C. Carreras and I. D. Walker, “Interval methods for
fault-tree analysis in robotics,” Reliability, IEEE Trans-
actions on, vol. 50, no. 1, pp. 3–11, 2001.

[14] S. Thrun, W. Burgard, and D. Fox, Probabilistic
robotics. MIT press, 2005.

[15] M. Blanke, M. Kinnaert, J. Schröder, J. Lunze, and
M. Staroswiecki, Diagnosis and fault-tolerant control.
Heidelberg: Springer, 2003.

